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against these vascular bacterial pathogens except X. oryzae 
pv. oryzae have been found or generated so far, although 
these pathogens threaten productivity of major crops. In 
this review, we summarize the lifestyles of major xylem-
colonizing bacterial pathogens and then discuss the pro-
gress of current research on disease resistance controlled 
by qualitative disease resistance genes or quantitative trait 
loci against them. Finally, we propose infection processes 
of xylem-colonizing bacterial pathogens as one of possible 
reasons for why so few qualitative disease resistance genes 
against these pathogens have been developed or identified 
so far in crops.

Introduction

Some of the agriculturally and economically important 
bacterial pathogens such as Ralstonia solanacearum, Xan-
thomonas oryzae pv. oryzae, X. campestris pv. campestris, 
Erwinia amylovora, Pantoea stewartii subsp. stewartii, 
Clavibacter michiganensis subsp. michiganensis, Pseu-
domonas syringae pv. actinidiae, and Xylella fastidiosa 
are vascular pathogens because they eventually colonize 
the vascular systems of plants, mostly xylem vessels, after 
infection and cause disease symptoms by inhibiting the 
functions of the xylem (Mansfield et al. 2012). They begin 
to infect plants through roots, leaves, or flowers, depending 
on pathogens, and finally reach xylem tissues. Once they 
reach xylem tissues, they produce high amounts of exopol-
ysaccharides (EPS), which are viscous macromolecules 
located in the outermost layer of bacterial cells (Leigh 
and Coplin 1992) and also contribute to biofilm formation 
on the walls of xylem tissues. As a result, they physically 
block water movement through xylem tissues, causing wilt-
ing symptoms. Mature xylem tissues are composed of three 
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main cell types: tracheary elements (tracheids and vessels), 
fibers, and parenchyma cells (Schuetz et al. 2013). The 
first two cell types are not metabolically active and form 
xylem pores for water movement, while parenchyma cells 
are metabolically active and exist outside of xylem ves-
sels. Xylem vessels are connected with one another through 
pits, and their size is the first barrier for passage of bacterial 
cells through pit membranes (Perez-Donoso et al. 2010).

Breeding and usage of crop cultivars resistant to bacte-
rial pathogens are very effective ways to control pathogens 
in most crops. Breeding programs in many countries have 
generated resistant cultivars used successfully in economi-
cally important crops such as rice and tomato (Collard and 
Mackill 2008; Foolad and Panthee 2012). Nevertheless, a 
relatively small number of resistant cultivars against the 
xylem-colonizing bacterial pathogens listed above have 
been found or generated so far. Recently, possible molecular 
mechanisms underlying plant defenses against diverse vas-
cular pathogens, including fungi, oomycetes, and bacteria, 
in xylem have been reviewed (Yadeta and Thomma 2013). 
In this review, we summarize their lifestyles, primarily their 
infection paths, in their host crops. Then, we specifically dis-
cuss the progress of current research on disease resistance 
controlled by resistance (R) genes or quantitative trait loci 
(QTLs) against major xylem-colonizing bacterial pathogens.

Possible infection processes of major xylem‑colonizing 
bacterial pathogens

Xylem-colonizing bacterial pathogens begin to infect plants 
through roots or natural openings such as hydathodes, 
lenticels, and nectarthodes. Infection paths to the xylem 
vary depending on the pathogens involved. Although how 
xylem-colonizing bacterial pathogens pass through plant 
tissues to reach the xylem has not been well characterized, 
in this review article, we discuss their possible infection 
paths and mechanisms used to reach the xylem.

X. oryzae pv. oryzae is the Gram-negative bacterium caus-
ing bacterial leaf blight in rice (Nino-Liu et al. 2006), and it 
enters leaf tissues mainly through hydathodes at the leaf mar-
gin (Fig. 1a). Hydathodes are generally formed by a group of 
living cells with intercellular spaces filled with water. Once this 
bacterium enters into the water cavity in hydathodes, it multi-
plies in the intercellular spaces of the epitheme, which is made 
of thin-walled parenchyma tissue (Tabei and Mukoo 1960). 
Then, it moves into xylem vessels and spreads in veins, result-
ing in whitish leaf blight symptoms. This bacterium can also 
enter into xylem vessels through wounding or temporary open-
ings caused by emerging roots at the base of the leaf sheath.

X. campestris pv. campestris, the Gram-negative bac-
terium that causes black rot disease in cruciferous plants, 

Fig. 1  Possible infection 
paths of four xylem-colonizing 
bacterial pathogens. a Possible 
infection path of Xanthomonas 
oryzae pv. oryzae through 
hydathodes in the rice leaf. 
b Possible infection path of 
Ralstonia solanacearum in the 
tomato root. c Possible infec-
tion path of Erwinia amylo-
vora through nectarthodes in 
the apple flower. d Possible 
infection path of Pseudomonas 
syringae pv. actinidiae through 
lenticels in the kiwifruit stem. 
Black lined arrows indicate pos-
sible infection paths. X xylem
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also infects xylem vessels and causes black rot disease in 
crucifer plants (Vicente and Holub 2013). This pathogen 
also initially infects leaves through hydathodes in the leaf 
margin. V-shaped necrotic lesions surrounded by chloro-
tic lesions appear at the infected sites. As the disease pro-
gresses, symptoms spread out from the infection sites and 
eventually bacteria move into the vascular systems, result-
ing in systemic infection. Infection to the vascular systems 
causes another symptom, which is blackening of the vascu-
lar tissues.

R. solanacearum is the Gram-negative bacterium and 
causes bacterial wilt disease in diverse plant species, 
including tomato, pepper, and potato (Peeters et al. 2013b). 
It can survive in soil for a long time in an inactive state 
(Um et al. 2013). Once the susceptible host plants are avail-
able, this pathogen begins to infect them through roots 
(Fig. 1b). R. solanacearum in soil first colonizes mainly 
two different sites of plant roots, the zone of elongation 
where plant exudation occurs and the axils of emerging 
or developed secondary roots (Vasse et al. 1995). At these 
colonized sites, this bacterium starts to move into a cortex 
layer through an apoplastic pathway and is present in the 
intercellular space. Before entering into xylem vessels, the 
bacterium must pass through the endodermis layer with 
suberized radial cell walls. Although it is not yet clear how 
it happens, somehow the bacterium reaches the xylem ves-
sels. After entering into the xylem vessels, bacterial cells 
produce high amounts of EPS and form biofilms inside the 
xylem vessels, resulting in wilting symptoms (Peeters et al. 
2013c).

E. amylovora, the Gram-negative bacterium causing 
fire blight disease in Rosaceae plants, is mainly transmit-
ted by insect vectors like honeybees and infects host plants 
through flowers (Fig. 1c). A flower is another plant organ 
carrying natural openings, called nectarthodes (Konarska 
et al. 2005). The nectarthodes are nectar-excreting struc-
tures in the nectary and each nectarthode consists of two 
curved, sausage-shaped guard cells (Buban et al. 2003). 
Like stomata, a pore is formed between these two cells. 
Depending on apple or pear cultivars, the nectarthodes 
are formed at the same level as epidermal cells (mesomor-
phic nectarthode) or below the epidermis (xeromorphic or 
sunken nectarthode) of the nectary (Buban et al. 2003). 
Research results showed that the position of nectarthodes 
may be correlated with susceptibility against E. amylovora 
(Buban et al. 2003). After infecting the nectary, E. amylo-
vora enters into the xylem vessels by uncharacterized paths 
or mechanisms and moves to main branches through them, 
resulting in fire blight symptoms (Malnoy et al. 2012).

P. stewartii subsp. stewartii, the Gram-negative bacte-
rium that causes Stewart’s wilt in maize, requires the insect 
vector, the corn flea beetle (Chaetocnema pulicaria), to 
infect maize plants. During sap feeding, the bacterium may 

infect the intercellular space of leaf tissues, causing water-
soaked lesions or directly infect xylem vessels, causing 
leaf blight and wilting (Roper 2011), although which path 
the bacterium uses as its major path for infection is poorly 
understood. However, the bacterium seems to prefer xylem 
vessels for colonization because it grows at much higher 
levels in xylem vessels.

C. michiganensis subsp. michiganensis, the Gram-posi-
tive bacterium that causes bacterial canker in tomato, also 
eventually enters into xylem vessels and colonizes the walls 
of xylem vessels (Chalupowicz et al. 2012). After coloniza-
tion, EPS and extracellular enzymes are critical for causing 
wilting symptoms (Gartemann et al. 2003). In particular, 
cell wall-degrading enzymes such as cellulase, polygalac-
turonase, pectin methylesterase, and xylanase are known 
to be produced by C. michiganensis subsp. michiganensis 
(Gartemann et al. 2003, 2008) and to degrade the walls 
of xylem vessels, allowing bacteria to attack the adjacent 
parenchyma cells. However, the primary paths used by the 
bacterium to reach the xylem vessels are mostly unknown, 
although they begin to infect host plants through wounds of 
the root or stem. In addition, this bacterium does not have 
flagella (Davis et al. 1984), indicating that it may not have 
active mechanisms to move into plant tissues.

Recent anatomical analyses in kiwifruit after infection 
with P. syringae pv. actinidiae causing bacterial canker 
showed that natural openings, mainly lenticels in stems and 
stomata in leaves, are major infection sites of this bacte-
rium (Fig. 1d) (Koh et al. 2012; Renzi et al. 2012; Scorti-
chini et al. 2012). In the infected plants, the bacterium was 
found at both dead xylem and phloem near infected lenti-
cels, indicating that this bacterium can infect both xylem 
and phloem and spread to other plant parts through them. 
Consistent with diverse infection sites, disease symptoms 
caused by this bacterium appear differently in distinct plant 
tissues or organs, including leaves (leaf spot), twigs (wilt-
ing), stems (canker), and even flowers (necrosis) (Scorti-
chini et al. 2012).

X. fastidiosa is a fastidious Gram-negative bacterial 
pathogen infecting xylem and causes several diseases in 
woody plants, including Pierce’s disease in grape and citrus 
variegated chlorosis disease in citrus (Purcell and Hopkins 
1996). Like the P. stewartii subsp. stewartii pathogen, this 
pathogen also needs insect vectors such as sharpshooters, 
leafhoppers, and spittlebugs for infection into host plants 
(Purcell and Hopkins 1996). During sap feeding, the bac-
teria are very likely injected directly into xylem vessels 
(Newman et al. 2003). After infection, they begin to colo-
nize xylem vessels and appear to attach vessel walls or tra-
cheary elements. Then, they form biofilm-like structures, 
causing blockage of water flow (Chatterjee et al. 2008). 
Tyloses, which are outgrowths of xylem parenchyma cells, 
are often found at the infected xylem tissues. In general, 
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these structures are considered as one of the structural 
defense mechanisms in plants. However, it seems that for-
mation of tyloses enhances blockage of water flow and also 
disease susceptibility (Sun et al. 2013). X. fastidiosa also 
produces cell wall-degrading enzymes to enlarge the pore 
size of pits, allowing bacteria to move to neighboring ves-
sels (Perez-Donoso et al. 2010).

Disease resistance conferred by qualitative R genes 
against xylem‑colonizing bacterial pathogens

Two different types of disease resistance against bacterial 
pathogens have been well characterized: pathogen-associ-
ated molecular pattern (PAMP)-triggered immunity (PTI), 
and effector-triggered immunity (ETI) (Jones and Dangl 
2006). Bacterial flagellin, peptidoglycan, lipopolysaccha-
ride, and elongation factor are well-known PAMPs. These 
PAMPs are recognized by pattern recognition receptors 
(PRRs) located in the plasma membrane of plant cells and 
trigger PTI (Zipfel 2014). Many Gram-negative bacterial 
pathogens actively deliver their virulence proteins, the so-
called effectors, via a Type III secretion system into host 
cells to modulate or inhibit host immune systems like PTI 
(Boller and He 2009). Host proteins encoded by R genes 
recognize directly or indirectly corresponding effectors to 
trigger ETI, mostly followed by hypersensitive response 
(HR), which is a programmed cell death that blocks the 
spread of pathogens in host tissues (Oh and Martin 2011).

These R genes are qualitative and very effective tar-
gets for breeding disease-resistant cultivars. Several R 
genes have been characterized and incorporated into each 
plant species to generate resistant cultivars. R genes such 
as Pto and Rsb (for ‘resistance suppressed by AvrPtoB C 
terminus’) together with Prf are effective to P. syringae 
pv. tomato causing bacterial speck in tomato leaves (Rose-
brock et al. 2007; Tang et al. 1996). R genes such as Bs 
genes (Bs1 ~ Bs4) are effective to X. campestris pv. vesi-
catoria causing bacterial spot disease in tomato and pep-
per leaves (Schornack et al. 2004). In contrast to bacterial 
pathogens mostly infecting leaves, however, among eight 
xylem-colonizing bacterial pathogens (Table 1), R genes 
only responsible for the recognition of corresponding effec-
tors from R. solanacearum and X. oryzae pv. oryzae have 
been characterized in Arabidopsis and rice, respectively.

X. oryzae pv. oryzae produces transcription activator-
like (TAL) effectors to control expression of host genes 
during infection (Doyle et al. 2013). At least 37 R genes 
(Xa genes) have been characterized in diverse rice spe-
cies, and most of them correspond to TAL effectors from 
diverse races of X. oryzae pv. oryzae (Nino-Liu et al. 2006; 
Zhang and Wang 2013). This case is an exceptional one 
between xylem-colonizing bacteria and their hosts in terms 
of the number of R genes identified. Twenty-one R genes 

have been characterized as dominant or semi-dominant 
genes, while eight genes are recessive. Xa21 was consid-
ered as an R gene, but now it has been reclassified as a PRR 
gene due to its similar feature to other PRR genes (New-
man et al. 2013). In silico analyses indicate that some of 
cloned Xa genes such as Xa3/Xa26 and Xa27 genes are 
highly expressed in the leaf blade of rice where infection of 
X. oryzae pv. oryzae is initiated (Fig. 2a). Because each of 
those R genes are very effective in controlling certain races 
of X. oryzae pv. oryzae, the intensive rice breeding program 
has successfully incorporated these R genes into commer-
cial rice cultivars.

R. solanacearum produces at least 94 Ralstonia injected 
proteins (Rip), including 22 known effector proteins 
(Mukaihara et al. 2010; Peeters et al. 2013a). Among them, 
PopP2 is a sole effector that has a characterized correspond-
ing R protein, RRS1-R, in Arabidopsis, and recognition of 
PopP2 by RRS1-R induces ETI (Deslandes et al. 2002). The 
RRS1-R protein has a unique structural feature compared 
with other R genes in that it contains not only NB and LRR 
domains but also a WRKY domain at its C-terminus. The 
RRS1-R gene is an allele of RRS1-S seen in other Arabidop-
sis ecotypes and is expressed in all tissues of Arabidopsis, 
based on in silico analysis (Fig. 2b). In addition, another 
two effectors, PopP1 and AWR5, were shown to induce 
an HR-like response in petunia and tobacco, respectively 
(Lavie et al. 2002; Sole et al. 2012), although their corre-
sponding R proteins have not been identified. Unlike X. ory-
zae pv. oryzae, effective R genes have not been character-
ized in crops such as tomato, pepper, and potato to breed 
resistant cultivars against R. solanacearum.

Some evidence has been reported indicating that some 
dominant R genes may be present in the Brassica species 
against X. campestris pv. campestris (Vicente and Holub 
2013; Vicente et al. 2002). However, there is no genetic 
evidence that any R genes responsible for resistance to 
other five vascular pathogens (E. amylovora, P. stewartii 
subsp. stewartii, C. michiganensis subsp. michiganensis, P. 
syringae pv. actinidiae, and X. fastidiosa) mentioned above 
exist. Why have effective R genes not been characterized 
in host crops against xylem-colonizing bacterial pathogens 
except X. oryzae pv. oryzae in rice plants, which have so 
many effective R genes against it? The use of alternate 
infection paths and mechanisms by xylem-colonizing bac-
teria to enter into xylem vessels unlike X. oryzae pv. oryzae 
and leaf pathogens would be one of plausible reasons that 
will be discussed below.

Disease resistance conferred by QTLs 
against xylem‑colonizing bacterial pathogens

In addition to qualitative R genes, QTLs responsible for 
disease resistance against xylem-colonizing bacterial 
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pathogens have been characterized in several plants. So far, 
QTLs responsible for resistance to seven of the xylem-col-
onizing bacterial pathogens mentioned above, except Pseu-
domonas syringae pv. actinidiae causing bacterial canker 
in kiwifruit, have been identified (Table 1). Nevertheless, 
little work has been done to understand the functional 
mechanisms of these QTLs. Here, we summarize what 
QTLs against xylem-colonizing bacterial pathogens have 
been described so far.

Resistance of rice to X. oryzae pv. oryzae is mainly con-
trolled by diverse dominant R genes, resulting in complete 
resistance. In many cases, QTLs, including OsGLP gene 
family in the chromosome 8, are also involved in resistance 
to this bacterium, showing partial resistance (Manosalva 
et al. 2009; Nino-Liu et al. 2006). Many pathogen-induced 

defense-related genes have been identified by transcrip-
tome analyses in rice. Interestingly, some defense-related 
genes were co-localized with resistance QTLs (Hu et al. 
2008). Using candidate gene approaches, some QTL genes 
encoding OsWRKY13, OsDR8, GH3-8, and OsMPK6 were 
cloned. In addition, previous studies showed that, in some 
cases, QTLs may be R genes that have lost their qualita-
tive feature and adopted new, intermediate resistance phe-
notypes (Li et al. 1999).

QTLs from diverse host plants of R. solanacearum have 
been identified, and some QTLs were recently fine mapped. 
For example, two QTLs, Bwr-12 and Bwr-6, in tomato cul-
tivar Hawaii 7996, MtQRRS1 in Medicago truncatula, and 
ERS1 in eggplant have been fine mapped (Ben et al. 2013; 
Lebeau et al. 2013; Wang et al. 2013). The ERECTA gene 

Fig. 2  In silico analyses of 
selected dominant resistance 
genes conferring resistance to 
Xanthomonas oryzae pv. oryzae 
(a) and Ralstonia solanacearum 
(b). Data originated from Rice 
Expression Profile Database 
(RiceXPro, http://ricexpro.
dna.affrc.go.jp/) were used for 
expression analyses of Xa genes 
in rice tissues. In addition, 
expression data from Weigel 
World (http://www.weigel-
world.org/resources/microarray/
AtGenExpress/) were used for 
the RRS1-R gene (At5g45260) 
in Arabidopsis tissues and 
organs
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controlling plant development in Arabidopsis was also 
shown to be involved in quantitative resistance to bacte-
rial wilt (Godiard et al. 2003). QTL mapping is in progress 
with several other plant species or cultivars showing the 
high level of partial resistance to bacterial wilt. In case of 
tomato, introgression lines originated from crosses of Sola-
num pennellii LA716 and S. lycopersicum M82 have been 
widely used for identifying QTLs resistant to bacterial wilt 
(Hai et al. 2008).

Due to genome complexity or polyploidy, research on 
QTLs responsible for resistance to black rot may be more 
complicated in Brassica species. However, some QTLs 
for resistance to X. campestris pv. campestris, including 
XccR1d-1, XccR1i-1, XccR4d-1, XccR4i-1, XccR4i-2, and 
XccR4i-3, have been identified in cabbage and B. olera-
cea (Camargo et al. 1995; Kifuji et al. 2013; Soengas et al. 
2007; Tonu et al. 2013). Two QTLs, Rcm 2.0 and Rcm 5.1, 
against the bacterium C. michiganensis subsp. michigan-
ensis were identified only in wild tomato species, Solanum 
habrochaites (previously Lycopersicon hirsutum) (Coaker 
and Francis 2004; Eichenlaub and Gartemann 2011). QTLs 
such as bin 2.03, bin 5.03, and bin 6.06/6.07 associated 
with resistance to P. stewartii subsp. stewartii have been 
sought in resistant corn cultivars since the 1930s, and sev-
eral have been identified (Pataky et al. 2008; Roper 2011), 
but genes responsible for QTLs have not yet been success-
fully identified and characterized.

Resistance to fire blight caused by E. amylovora is very 
likely to be quantitatively controlled, according to long 
time studies of QTL analysis and gene expression profiling 
(Vrancken et al. 2013). So far, about 30 QTLs linked to fire 
blight resistance, including CH05e03-1, MdSNPui09422, 
MdSNPui07111, and NZ02b1, have been identified in dif-
ferent apple cultivars by QTL analyses and association 
mapping (Khan et al. 2013). Although this disease has been 
characterized for more than 110 years, germplasm showing 
complete resistance to fire blight has not been identified. In 
other woody plants, some QTLs like PdR1 locus responsi-
ble for disease resistance against X. fastidiosa, a bacterium 
that causes diverse diseases, including Pierce’s disease in 
grape and citrus variegated chlorosis disease in citrus, have 
been identified (Carlos de Oliveira et al. 2007; Purcell and 
Hopkins 1996; Riaz et al. 2006).

Possible reasons that only of few R genes 
against xylem‑colonizing bacteria have been identified 
in crops

Many effective R genes against X. oryzae pv. oryzae 
have been identified in rice, while few R genes against 
other xylem-colonizing bacteria in other crops have. 
Based on possible infection paths used by X. oryzae 
pv. oryzae, it would be expected to first colonize the 

epitheme, which is composed of a group of metaboli-
cally active cells. During this period, molecular interac-
tions between bacterial cells and plant cells likely occur 
and might drive rice cells to develop R genes evolution-
arily for defending themselves from pathogens. In fact, 
several dominant Xa genes are expressed in the rice 
leaf blade, as shown in Fig. 1a. Similarly, X. campes-
tris pv. campestris also infects through hydathodes and 
should colonize epitheme. However, there is no known 
R gene for this pathogen. Unlike X. oryzae pv. oryzae, 
this pathogen kills host cells probably by degrading cell 
walls based on the rotting symptom observed. Indeed, 
this bacterium produces two polygalacturonases that are 
important for virulence (Wang et al. 2008). It suggests 
that epitheme cells may be destroyed so rapidly that any 
R gene expression is ineffective or any effective R genes 
do not exist. X. oryzae pv. oryzae also secretes some cell 
wall-degrading enzymes such as esterase, cellulase, and 
xylanase (Sun et al. 2005). However, it seems that these 
enzymes play a role in virulence after bacteria enter 
xylem vessels, based on the disease symptoms. In addi-
tion, cell wall-degrading enzymes could trigger innate 
immunity in rice, but bacterial effectors could actively 
suppress it (Sinha et al. 2013).

R. solanacearum infects through natural openings or 
wounds in roots. Once the bacterium enters into cortex 
tissues, it must interact with cortex cells. A recent study 
about the colonization of R. solanacearum in Arabidopsis 
roots showed that rapid plasmolysis occurred in epider-
mal, cortical, and endodermal cells, even including those 
not in contact with the bacteria (Digonnet et al. 2012). 
This finding indicates that, somehow, cells around the 
infection area are dead. Moreover, other reports showed 
that the bacterium produces cell wall-degrading enzymes 
such as endoglucanase and pectinases to pass through the 
endodermis (Peeters et al. 2013b). These observations 
strongly imply that R. solanacearum uses a necrotrophic 
mode of action to pass through root tissues until it reaches 
the xylem vessels. Due to the necrotrophic mode of action 
of this bacterium, plant cells having contact with this 
bacterium may be dead before effects of R genes appear 
or effective R genes in host crops may not be evolved. 
Although the RRS1-R gene in Arabidopsis is expressed in 
all tissues (Fig. 2b), including roots, it is recessive. More-
over, no other R genes against this pathogen have been 
identified in crops.

Two pathogens, P. stewartii subsp. stewartii and X. fas-
tidiosa, need insect vectors to infect host plants. In these 
cases, insect vectors help pathogens bypass contact with 
parenchyma cells and enter directly into xylem vessels. 
For this reason, host cells may not develop or express 
effective R genes to these pathogens. Consistently, X. fas-
tidiosa does not possess a Hrp type III secretion system 
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for secretion of effectors (Simpson et al. 2000). E. amylo-
vora is also transmitted by insects like honeybees, but it 
is not directly injected into xylem vessels. Instead, the 
flowers or actively growing shoots are the primary sites 
for infection. During infection, this bacterium may have 
an opportunity to contact with parenchyma cells (Fig. 2c). 
However, no R genes from host plants of E. amylovora 
have been identified and not many resistant resources 
have even been found, indicating that bacterial cells may 
not interact directly with parenchyma cells, but instead 
bypass this step by unknown mechanisms. In addition, 
host plants of E. amylovora, such as apples and pears, are 
perennial plants, resulting in difficulty of genetic analysis 
to explore genetic loci for disease resistance against this 
bacterium.

How C. michiganensis subsp. michiganensis initially 
infects host plants has not been determined, although it 
has been shown that the bacterium colonizes xylem vessels 
and is transmitted by seeds. So far, only two QTLs, but no 
R genes, have been identified for this pathogen, indicat-
ing that host cells may not have the opportunity to evolve 
R genes. Unlike other seven pathogens mentioned in this 
review article, C. michiganensis subsp. michiganensis is 
only a Gram-positive bacterium, and no such effector pro-
teins and a type III secretion system have been identified in 
this pathogen (Gartemann et al. 2008). So far, it has been 
reported that cellulase and protease are major virulence 
factors (Eichenlaub and Gartemann 2011), and this is prob-
ably a reason why host cells may not evolve effective R 
genes.

Any R genes or QTLs associated with resistance to 
P. syringae pv. actinidiae have not been found in kiwi-
fruit. Like other P. syringae pathovars, this pathogen 
produces and secretes many effector proteins (Scorti-
chini et al. 2012). In general, effector proteins are direct 
or indirect targets of R gene products. In both the cases 
where the pathogens infect host plants through stomata 
or lenticels, they must be in contact with metabolically 
active cells. Based on this feature, there is a high possi-
bility that host cells may develop significant numbers of 
R genes. However, P. syringae pv. actinidiae was first 
detected from commercial kiwifruit trees in Japan only 
30 years ago and then in 2010 in New Zealand where 
kiwifruit breeding programs are actively running (Ever-
ett et al. 2011). For these reasons, genetic resources 
controlling disease resistance to this pathogen might 
not yet have been sought out intensively or it could be 
that kiwifruit trees commercially available or in breed-
ing programs may not have a chance to interact with the 
pathogens. Moreover, like apples and pears, kiwifruit 
trees are also perennial plants. This could be another 
reason to make difficulty of genetic analysis for search-
ing disease resistance loci.

Conclusion remarks and future perspectives

Eight xylem-colonizing bacterial pathogens mentioned in 
this review article cause severe diseases in economically 
important crops, including vegetables such as tomato, 
pepper, and cabbage, major grain crops such as rice and 
maize, and major fruit trees such as apple, grape, orange, 
and kiwifruit. Because of the importance of these crops and 
effectiveness of resistant cultivars for controlling diseases, 
many researchers have attempted to generate resistant cul-
tivars via intensive breeding programs with diverse genetic 
resources of each crop, including wild species with differ-
ent origins. Nevertheless, no many qualitative R genes or 
QTLs conferring disease resistance against xylem-coloniz-
ing bacterial pathogens have been found. Each xylem-col-
onizing bacterial pathogen has distinct infection sites and 
paths in its host plants. This could be one reason for few 
qualitative R genes that have been found in host crops.

The following investigation will help us to better under-
stand resistance mechanisms of crops against xylem-col-
onizing bacteria. First, although diverse genetic resources 
have been already examined for exploring resistance 
sources in most crops, there are still other genetic resources 
available that have not yet been searched, in particular, for 
resistance against P. syringae pv. actinidiae. Thus, there 
is still the possibility that massive screening of available 
genetic resources may yield new and effective genetic fac-
tors conferring resistance to xylem-colonizing bacterial 
pathogens. Second, fine determination of early infection 
paths or processes of xylem-colonizing bacterial pathogens 
will be critical for understanding the initial interactions 
between pathogens and host plants at the infection sites. 
Although possible infection paths of four xylem-coloniz-
ing bacterial pathogens are described in Fig. 1, there are 
still many points that should be determined in the future 
to fully understand their infection paths. Third, molecular 
determination of the identity of QTLs responsible for dis-
ease resistance will help us to understand the mechanisms 
of resistance. So far, most of the detected QTLs in all the 
crops mentioned above, except for rice, have not yet been 
characterized.
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